M.Math. IInd year — II Semestral exam 2009 Algebraic number theory — B.Sury Answer any FIVE Be brief; quote precisely the results you use.

Q 1.

For any Galois extension L/K of number fields, show that the decomposition group at almost all prime ideals of \mathcal{O}_L are cyclic.

OR

Prove that for any Galois extension K of \mathbf{Q} , the Galois group is generated by the various inertia subgroups of the primes.

Q 2.

Show that the radius of convergence of $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ is $p^{-1/(p-1)}$ in k where $[k:Q_p] < \infty$.

\mathbf{OR}

Determine with proof the unramified extension of a given degree n over \mathbf{Q}_p .

Q 3.

For a modulus \mathcal{M} of a number field K, define the ray class group mod \mathcal{M} . Show that $I_K^{\mathcal{M}}/i(K_{\mathcal{M}}) \cong C_K$, the class group of K.

OR

Let $f \in \mathcal{O}_K[X]$ be monic, and assume that the Galois group of f over K fixes at at least one root of f. Then, for every non-zero prime ideal P of \mathcal{O}_K , the equation f(X) = 0 has a solution in $\mathcal{O}_K \mod P$.

Q 4.

State the Frobenius density theorem and use it to deduce that for an abelian extension L/K, the Artin map gives a surjection from $I_K^{\mathcal{M}}$ onto $\operatorname{Gal}(L/K)$, provided \mathcal{M} is divisible by all ramified places.

OR

State the Frobenius density theorem and use it to prove that in a cyclic extension of algebraic number fields, infinitely many primes are inert.

P.T.O.

Q 5.

Let $G = \langle \sigma \rangle$ be a cyclic group of order n acting on a free abelian group $A = \sum_{i=1}^{d} Zv_i$ of rank d dividing n in the following manner :

$$\sigma(v_i) = v_{i+1} \forall i < d ; \ \sigma(v_d) = v_1.$$

Compute the Herbrand quotient q(A).

OR

Let L/K be a cyclic extension of algebraic number fields. For a finite place v of L, show that the unit group U_v of L_v is a module for the decomposition group at v and that $H^1(U_v)$ has order e_v .

Q 6.

Let $n!(X^n/n! + X^{n-1}/(n-1)! + \ldots + X + 1) = f(X)g(X)$ with $f, g \in \mathbb{Z}[X]$ where f is irreducible. Prove that any prime p dividing f(0) is $\leq \deg(f)$. *Hint:* Work in the field $K = Q(\theta)$ where θ is a root of f. Write

$$\theta^n + n\theta^{n-1} + \dots + n!\theta = -n!$$

and consider the \mathcal{P} -adic valuations of both sides for some \mathcal{P} lying over p.

OR

Let $K = Q(\zeta)$, where ζ is a primitive *n*-th root of unity. If S is the set of prime ideals containing (n) and $I_Q(S)$ denotes the group of fractional ideals generated by primes outside S, find the image and the kernel of the Artin map from $I_Q(S)$ to Gal (K/Q).